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with general expectations.
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1. Introduction

Topological string amplitudes can be presented in a variety of ways depending on their

interpretation and the physical picture one is interested in. Their basic definition in terms of

Gromov-Witten invariants relates to the worldsheet description and has been given precise

mathematical foundations [1]. The other reformulations are based on conjectural physical

dualities and refer to a target space point of view. M-theory interpretation reveals their

integrality properties encoded in the Gopakumar-Vafa invariants related to the counting of

BPS states [2]. A connection to Chern-Simons theory - whose solution is well known - via

the open-closed duality [3, 4] allows to construct the topological vertex [5 – 7] from which

solutions of closed topological strings on arbitrary toric Calabi-Yau manifolds can be built.

Yet another line of development relates topological amplitudes to the Donaldson-Thomas

invariants, Calabi-Yau crystals and their quantum foam interpretation [10 – 16].

The object we focus on in this note is the so-called closed topological vertex C — a

local Calabi-Yau neighbourhood of three P
1’s meeting in one point. This is an example of

a nontrivial but exactly solvable geometry, for which the above mentioned pictures can be

given explicitly and some of them are already known [19, 20]. The main contribution we

provide is a crystal model for the closed topological vertex, which extends the class of known

Calabi-Yau crystals. This new model naturally reproduces the Gopakumar-Vafa invariants,
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which is a general property observed before. We prove that the model introduced indeed

corresponds to the closed topological vertex C by relating it explicitly to the topological

vertex computations.

Apparently, C belongs to the class of ’off-strip’ geometries, whose dual toric diagrams

cannot be presented as a triangulation of a rectangle. On the other hand, the topological

vertex calculations for a special class of geometries which can be presented on a strip have

been vastly simplified in [8]. Thus the method we use offers a possibility of simplifying

those rules for a broader class of geometries. We provide another example of an ’off-strip’

geometry by considering a flop transition of C. The partition function for the resulting

geometry Cflop can also be computed in a way parallel to the computation for C before

the flop, and it is possible to determine both Gopakumar-Vafa invariants and classical

contributions for Cflop in terms of those for C.

The plan of the paper is as follows. In section 2 the geometry of the closed topological

vertex is introduced, and its topological string partition function is presented and discussed

from various points of view. Section 3 starts with a brief presentation of the known Calabi-

Yau crystal models which is followed by an introduction of a new model. The properties

of this new model are discussed, and the connection with the closed topological vertex is

explained. In section 4 the model is explicitly related to the topological vertex calculation

and its solution as an ’off-strip’ geometry is presented; a possibility of generalization to

other ’off-strip’ geometries is accompanied by a careful analysis of a flop transition of C.

Section 5 contains the discussion of the results and directions for further studies. The

relevant notation and the properties of Schur functions we need are assembled in appendix

A. Finally appendix B summarizes the rules for computations on a strip.

2. The closed topological vertex geometry

The closed topological vertex C is a toric Calabi-Yau threefold, consisting of three P
1’s

meeting in one point, with local neighbourhood of each sphere being isomorphic to a sum

of line bundles O(−1) ⊕O(−1). This geometry has been discussed in [19, 20], and can be

understood as a particular resolution of C
3/Z2 ×Z2 singularity [21, 22]. It is convenient to

introduce quantities Qi = e−ti related to Kähler parameters ti, i = 1, 2, 3 which correspond

to sizes of the spheres. The toric diagram of the closed topological vertex is shown in figure

1.

The main object of considerations below is the partition function of C. There is a

variety of ways how to compute or present topological string partition functions, and in

the case of the closed topological vertex it is not difficult to make them explicit. Some

of these results are already done in literature, so first we briefly quote them to set later

computations in a proper context.

Let us recall the A-model topological string partition function for arbitrary Calabi-Yau

manifold X is of the form

ZX
top = eF X

top = M(q)χ(X)eF X
class

+F X

, (2.1)

FX
class =

∑ 1

6g2
s

aijk titjtk +
∑ 1

24
biti, (2.2)
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Figure 1: The closed topological vertex C.

FX =
∑

g≥0

∑

β 6=0

g2g−2
s Ng

β Qβ, (2.3)

with the notation as follows. M(q) is McMahon function given in (3.3) with q = e−gs ,

and χ(X) is Euler characteristic of X. Qi = e−ti are related to Kähler parameters of the

manifold ti. The free energy FX
top is a sum of FX

class with polynomial dependence on ti (in

particular with genus zero cubic terms encoding classical intersection numbers aijk and

genus one terms related to c2(X)) and contributions from worldsheet instantons FX . The

latter are encoded in terms of Gromov-Witten invariants Ng
β , which roughly count maps

from a genus g Riemann surface into a curve in a Calabi-Yau manifold of a certain class

β = (di) ∈ H2(X, Z), and Qβ =
∏

Qdi

i . In most of what follows we restrict our attention

to instanton contributions ZX = exp FX as they arise naturally in crystal models.

For the closed topological vertex β = (d1, d2, d3), with degree di corresponding to the

i’th sphere, and (2.3) reads

F C =
∑

g≥0

∑

d1,d2,d3

g2g−2
s Ng

d1,d2,d3
Qd1

1 Qd2
2 Qd3

3 .

These local Gromov-Witten invariants (local for C being noncompact) can be rigorously

derived via the Cremona transform by identification with known invariants of a relevant

blow-up of a projective space. This approach was originally introduced in this context in

[18], and applied to the closed topological vertex in [19] with the result

Ng
d,0,0 = Ng

0,d,0 = Ng
0,0,d = Ng

d,d,d = −Ng
d,d,0 = −Ng

d,0,d = −Ng
0,d,d =

= d2g−3 |B2g|

2g (2g − 2)!
, for d 6= 0, (2.4)

and all other Ng
d1,d2,d3

vanishing. Apparently, Ng
d,0,0 = Ng

d is equal to the invariant Ng
d for

a super-rigid P
1 (i.e. resolved conifold) derived in [17].
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The structure of the topological string partition function is conjecturally encoded in

integer Gopakumar-Vafa invariants [2] ng
β, so that (2.3) takes the form

FX =
∑

g≥0

∑

β=(βi)

∑

n≥1

ng
β

−Qnβ

n [n]2−2g

with [n] = qn/2 − q−n/2. This nice integrality property is balanced by the fact that there

is no general recipe to compute them, which is not unrelated to difficulties in their formal

mathematical definition. It is instructive to consider first the resolved conifold geometry

with a single Kähler parameter Q = e−t corresponding to the size of P
1. In this case there

is only one non-trivial Gopakumar-Vafa invariant n0
1 = 1 which encodes the information

of all Gromov-Witten invariants Ng
d = Ng

d,0,0 given in (2.4), and the free energy can be

rewritten as

F conifold = −
∑

g≥0

g2g−2
s

|B2g|

2g (2g − 2)!
Li3−2g(Q) =

∑

n≥1

−Qn

n[n]2
, (2.5)

where in genus expansion a polylogarithm arises Lik(Q) =
∑

n≥1
Qn

nk .

The structure of the closed topological vertex partition function is similar to F conifold,

in a sense that there is also only a finite number of non-vanishing Gopakumar-Vafa invari-

ants

n0
1,0,0 = n0

0,1,0 = n0
0,0,1 = −n0

1,1,0 = −n0
1,0,1 = −n0

0,1,1 = n0
1,1,1 = 1

and they correspond respectively to single spheres, each possible pair of them and the entire

triple. Thus the instanton part of the partition function for C can be written as

ZC = exp
∑

n>0

−Qn
1 − Qn

2 − Qn
3 + Qn

1Qn
2 + Qn

1Qn
3 + Qn

2Qn
3 − Qn

1Qn
2Qn

3

n[n]2
. (2.6)

Of course this result is consistent with (2.4). This can also be written as a product formula,

as described in general in [23]. In fact, it turns out that the crystal model we introduce

in the next section naturally computes the result in the form related both to the above

Gopakumar-Vafa expansion and a product formula, which is a fact already stressed in [16].

There is a very effective way to compute topological string quantities for toric threefolds

in terms of the topological vertex formalism [5, 6]. This is based on a conjectural geometric

transition to open topological strings and their relation to Chern-Simons theory [4]. There

is also an accompanying mathematical formulation [7]. ZC has been computed in these

’physical’ and ’mathematical’ formalisms in [20], and shown to agree with (2.6). In section

4 we will also compute ZC using ’physical’ topological vertex, but in a way which is simpler

and faster than it is done in [20]. In fact the main motivation behind the calculation

we present is it makes an immediate connection with the crystal model which we present

next. And then - last but not least - the method presented here suggests how to generalize

formalism of [8] to ’off-strip’ geometries.

So far we focused only on the instanton contributions F C which have already been

derived in literature. The classical part F C
class will be discussed in section 4.3 together with

the analysis of the flop transition.
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3. Crystal models

3.1 The idea

The notion of Calabi-Yau crystals appeared first in [10]. It was based on the observation

that the topological string partition function for C
3 is equal to a generating function Z

for a classical system which consists of 3-dimensional partitions which can fill a positive

octant of R
3. Allowed 3-dimensional configurations of partitions are weighted by a number

of boxes they are built of,

Z =
∑

π−3d partition

q|π|. (3.1)

This partition function can be computed in a simple way in a transfer matrix formalism,

carefully presented in [10]. Essentially, it amounts to slicing the R
3 octant by x = y planes.

Then each 3-dimensional partition turns into a sequence of 2-dimensional partitions, the

neighbouring ones necessarily satisfying an interlacing relation Â which is a consequence

of the allowed 3-dimensional configurations. One can encode each 2-dimensional partition

as a state of a Fermi sea |µ〉 in a standard way, and then use the operators

Γ±(z) = exp
∑

n>0

z±n

n
α±n (3.2)

satisfying Γ−(1)|µ〉 =
∑

νÂµ |ν〉 to compute

ZC3
(q) = 〈0|

∏

n>0

Γ+(qn−1/2)
∏

m>0

Γ−(q−(m−1/2))|0〉 =

= M(q) =

∞
∏

n=1

1

(1 − qn)n
= exp

∑

n>0

1

n[n]2
, (3.3)

where M(q) is McMahon function. The computation is straightforward and amounts to

using commutation relations

Γ+(z)Γ−(z′) =
1

1 − z/z′
Γ−(z′)Γ+(z). (3.4)

The appearance of such a statistical model in connection with topological strings has

found two explanations. On one hand it was interpreted as gravitational quantum foam [11]

and expressed in terms of 6-dimensional gauge theory. On the other, it was shown in [15]

that the Chern-Simons partition function on S3 for U(N) gauge group can be essentially

rewritten in terms of a crystal model, and then the relation to closed topological strings

arises from ’t Hooft duality. The result (3.3) arises as N → ∞ limit of the model in

[15], which is valid for arbitrary N . For any finite N the necessary condition is to count

only these 3-dimensional diagrams which have at most N boxes in one direction (and no

restriction in two other directions). In other words, we cut-off the positive octant where

3-dimensional partitions were considered by a ’wall’ at position x = N . In the transfer

matrix formalism, the introduction of such a wall is possible in two ways; in terminology of

[15] either by considering closed-string slicing or open-string slicing. The former is obtained
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by inserting only N operators in one direction in the expression (3.3); the letter amounts

to inserting a projector operator 1dt≤N between the sequence of Γ+ and Γ− operators

ZP1
= 〈0|

∏

n>0

Γ+(qn−1/2)

N
∏

m=1

Γ−(q−(m−1/2))|0〉 =

= 〈0|
∏

n>0

Γ+(qn−1/2)1dt≤N

∏

m>0

Γ−(q−(m−1/2))|0〉 =

= M(q) exp
∑

n>0

−Qn

n[n]2
, (3.5)

where Q = qN . The final result is the closed string partition function for the resolved

conifold ZP1
, as it should. The operator 1dt≤N can be written in terms of some coherent

states and integration over U(N), but as we don’t need its explicit form we refer the

interested reader to [15].

We should stress that this is the first line of (3.5) which can be explicitly evaluated

due to (3.4) relations. It has an obvious generalization, which amounts to inserting fi-

nite numbers N1, N2 of both Γ± operators, and corresponds to 3-dimensional partitions

restricted to the ’well’ of rectangular size N1×N2 and infinite hight. Explicit computation

in [16] using topological vertex formalism shows a generating function for such a classical

system is equal to a partition function for a toric threefold called ’double-P1’ shown in

figure 2, which is a local neighbourhood of two P
1’s meeting in a single point, with Kähler

parameters t1,2 determining P
1’s sizes given by Q1,2 = e−t1,2 = qN1,2

Zdouble−P1
= 〈0|

N2
∏

n=1

Γ+(qn−1/2)

N1
∏

m=1

Γ−(q−(m−1/2))|0〉 =

= M(q) exp
∑

n>0

−Qn
1 − Qn

2 + Qn
1Qn

2

n[n]2
. (3.6)

This can also be immediately obtained from (B.2) with α = •, in which case the products

over k in (B.1) are trivial and we are left with the same exponential factors as above. We

now wish to pursue this argument further.

3.2 The cube model

The model we wish to introduce is a natural continuation of the above presentation. We

consider all 3-dimensional partitions which fit into a finite cube of size M × L × N , and

ask what is the corresponding generating function Zcube, given by (3.1) with the present

restriction on π. Let us remark there is only a finite number of terms in Zcube = 1 + . . . +

qLMN , the last one corresponding to the highest power of q. In other words, we introduce

three ’walls’ at positions x = M , y = L, z = N , as illustrated in figure 3.

In this case the partition function can also be written in the transfer matrix formalism,

with two walls represented by finite number of Γ± and the third wall by the projection ZP1

Zcube = 〈0|

L
∏

n=1

Γ+(qn−1/2)1dt≤N

M
∏

m=1

Γ−(q−(m−1/2))|0〉. (3.7)

– 6 –
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Figure 2: Toric diagram (left) and its dual (right) for the double-P1.

Figure 3: The cube crystal model of finite size M × L × N .

Our claim is this generating function is equal to the closed topological vertex partition

function (2.6) up to the McMahon function

Zcube = M(q)ZC , (3.8)

with identification of parameters

Q1 = qM , Q2 = qL, Q3 = qN . (3.9)

The explicit evaluation of the correlator (3.7) is nontrivial, due to a complicated form

of the projector 1dt≤N. Fortunately, the generating function for plane partitions in a finite

box has been well known since originally derived by combinatorial methods by McMahon

[25]; another combinatorial proof is presented in [24]. Thus we can just use this result,

– 7 –
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which reads:

Zcube = Z1Z2 =
∏

(i,j)∈ML

1 − qN+i+j−1

1 − qh(i,j)
, (3.10)

where for later convenience we introduce two factors

Z1 =
∏

(i,j)∈ML

1

1 − qh(i,j)
,

Z2 =
∏

(i,j)∈ML

(1 − qN+i+j−1),

and ML denotes 2-dimensional partition with L rows of the same length M , which is a base

of the cube, and h(i, j) is the hook-length of its (i, j) element (A.1). Using the elementary

series

log(1 − a) = −
∑

k>0

ak

k

to rewrite products as exponentials we arrive at the following form of the above factors

Z1 = exp
∑

n>0

1 − Qn
1 − Qn

2 + Qn
1Qn

2

n[n]2
, (3.11)

Z2 = exp
∑

n>0

−Qn
3 + Qn

1Qn
3 + Qn

2Qn
3 − Qn

1Qn
2Qn

3

n[n]2
. (3.12)

Remarkably, the product (3.10) of the above two factors indeed reproduces the closed

topological vertex partition function (2.6) up to the McMahon function, as claimed in

(3.8). In the next section we derive this result from the topological vertex point of view,

in a way which makes relation to the crystal result (3.10) explicit.

4. Topological vertex and ’off-strip’ geometries

4.1 Derivation

Now we derive the result (2.6) from the topological vertex formalism, in a way which gives

this result in the form explicitly related to (3.10). In computation we use conventions and

various identities given in appendix A, as well as a variety of well-known properties of Schur

functions, assembled e.g. in appendices in reference [16]. In fact the result can be obtained

much faster, if certain sums in the amplitude are automatically performed using additional

machinery of [8], which we also review in appendix B. It turns out the derivation presented

below can be understood as an extension of that machinery to a more general situation.

Nonetheless, for completeness we first derive the closed topological vertex partition function

from first principles.

The basic topological vertex amplitude is

CR1R2R3 = q
1
2
(κR2

+κR3
)sRt

2
(qρ)

∑

P

sR1/P (qRt
2+ρ)sRt

3/P (qR2+ρ). (4.1)

– 8 –
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It will turn out convenient to use cyclic symmetry to write the amplitude for the closed

topological vertex from figure 1 as

ZC =
∑

R1,R2,R3

CR2R3R1CRt
1••

CRt
2••

CRt
3••

(−Q1)
|R1|(−Q2)

|R2|(−Q3)
|R3|

sR1(−Q1q
ρ)sRt

2
(−Q2q

ρ)sR3(−Q3q
ρ) =

=
∑

R1,R2,R3,P

[

sP (−Q1q
ρ)sP (−Q2q

ρ)
][

sR3(q
ρ)sRt

3
(−Q3q

ρ)
]

[

sR2(q
Rt

3+ρ)sRt
2
(−Q2q

ρ)
][

sRt
1
(qR3+ρ)sR1(−Q1q

ρ)
]

.

This can be rewritten using (A.6) in the form

ZC = exp
[

∑

n

−Qk
1 − Qk

2 + Qk
1Q

k
2

n[n]2

]

×

×
∑

R3

sR3(q
ρ)sRt

3
(qρ)(−Q3)

|R3|
∏

k

(1 − Q1q
k)Ck(R3)(1 − Q2q

k)Ck(Rt
3). (4.2)

The exponent factor which arises above is equal to Z1 (3.11), which is double-P1 partition

function (up to the McMahon function). Thus we have to show the sum over R3 above

reproduces Z2 (3.12). We use (A.3) to rewrite (4.2) as

ZC =
Z1

M(q)

∑

R3

(−Q3)
|R3|XR3YR3, (4.3)

where

XR3 = sRt
3
(qρ)

∏

k

(1 − Q1q
k)Ck(R3) =

= (−1)|R3|q|R3|/2+n(R3)
∏

(i,j)∈R3

1 − qM+j−i

1 − qh(i,j)
(4.4)

and similarly

YR3 = (−1)|R3|q|R
t
3|/2+n(Rt

3)
∏

(i,j)∈Rt
3

1 − qL+j−i

1 − qh(i,j)

where we used identification (3.9).

Finally, the crucial step is to rewrite XR3 and YR3 using the identity (A.2) for a Schur

function with finite number of variables

ZC =
Z1

M(q)

∑

R3

(−qQ3)
|R3|sR3(1, q, q

2, . . . , qM−1)sRt
3
(1, q, q2, . . . , qL−1)

=
Z1

M(q)

∏

i=1,...L; j=1,...,M

(1 − Q3q
j+i−1) =

Z1Z2

M(q)
(4.5)

where the sum of Schur functions (A.4) was used in the last line. Because Z1Z2 = Zcube,

we indeed obtain (3.8)

Zcube = M(q)ZC .

– 9 –
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In the above derivation the same factors as in the crystal model arise, i.e. Z1 associated

with double-P1 partition function and Z2 ’implementing’ the third P
1. In this form it also

becomes a trivial observation that in N → ∞ limit the proper result for double-P1 is

recovered (3.6).

Let us also remark on McMahon M(q) factors. It is known the topological vertex

computations do not produce this contribution, so to obtain the full topological string

partition function (2.1) one should introduce one factor of M(q) for each topological vertex

CPQR used in the vertex computation of the amplitude [11]. On the other hand, in our

crystal model just a single factor of M(q) arises as the plane partitions it counts are

anchored in one particular corner of the cube. This is why there is one factor of M(q) in

(3.8).

4.2 Moving off the strip

It is interesting to relate this result to the formalism developed in [8] which allows to

perform computations for toric geometries whose dual diagrams are given by a triangulation

of a rectangle (or a ’strip’ - hence the terminology). We briefly review this machinery in

appendix B. A simple example of a geometry of this type is the double-P1 from figure 2,

whose dual diagram is undoubtedly a triangulation of a strip.

Let us notice that the toric diagram for the closed topological vertex can be understood

as a double-P1 with one additional sphere attached. This is shown in figure 4, with double-

P
1 given by spheres Q1 − Q2 and the additional sphere denoted by Q3. Even though the

full diagram for the closed topological vertex cannot be drawn on a strip, a diagram for

the double-P1 part can as presented above. Thus the partition function ZC can be written

as

ZC =
∑

α

sαt(qρ)(−Q3)
|α|Zα,

where Zα is the factor for a double-P1 with one nontrivial representation, and is derived

in appendix (B.2)

Zα = sα {•α}Q1 [••]Q1Q2{α
t•}Q2 =

=
Z1

M(q)
sα(qρ)

∏

k

(1 − Q1q
k)Ck(α)(1 − Q2q

k)Ck(αt), (4.6)

which altogether reproduces (4.2), and now the calculation continues as above and repro-

duces (4.5).

So, in this way we managed to ’move off the strip’, which technically boils down

to performing a sum of Schur functions with finite number of arguments (4.5). It thus

seems likely this result might be generalized to a broader class of non-strip-like Calabi-Yau

manifolds, and is interesting to pursue further. Below we consider an example of another

’off-strip’ geometry related by a flop to the closed vertex, for which a partition function

can also be derived using these methods.
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Figure 4: The closed topological vertex as a strip with an additional P
1 (of the size determined

by Q3) attached.

4.3 Flop transition

The closed topological vertex consists of three P
1’s with local bundles isomorphic to the

resolved conifold. As is well known, such a bundle may undergo a flop transition. For the

resolved conifold with Kähler parameter t and Q = e−t, a flop may be understood as a

continuation to negative values of t. The partition function is invariant under this process

and this should be seen order by order in genus expansion. To get a partition function

of the flopped geometry, after the analytic continuation to negative t one should expand

the result again in positive powers of Q. For the resolved conifold the geometry before

and after the transition is the same, which allows to fix the polynomial dependence of the

free energy on t [3]. In the case of the closed topological vertex the geometries before and

after the flop are different, but it is possible to determine classical contribution to the free

energy of Cflop in terms of those of C as we discuss below. Moreover, the invariance of

the partition function under the flop implies in particular the Gopakumar-Vafa invariants

should not change during the transition, providing the parameters on both sides of the

transition are matched appropriately; such a behaviour indeed follows in general from the

topological vertex rules as shown in [9], and the calculation below proves the consistency

of our method with these results.

Let us focus on the closed topological vertex geometry, and the transition under which

the conifold associated to Q2 is flopped. We call the ensuing geometry Cflop. The transition

is presented in figure 5, and it is best understood in terms of a dual graph — it is then

represented by a tilt of a diagonal of a square corresponding to the conifold. The closed

vertex on the left consists of three spheres meeting in one point, and after the flop it

is replaced by a string of P
1’s with two meeting points, and with a proper arrangement

of bundles, as on the right side of the figure. We denote the parameters of the flopped

– 11 –
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Figure 5: The closed topological vertex C with its dual diagram (left) and the geometry after the

flop Cflop (right).

geometry by P1, P2, P3, and also express them in units of gs as

P1 = qMf = e−s1 , P2 = qLf = e−s2 , P3 = qNf = e−s3 . (4.7)

How should the partition function for the flopped closed vertex look like after the

transition? As mentioned above, it should be related to (2.6) by a suitable identification

of target space parameters. The geometry of the bundles in figure 5 suggests the following

relations

Q1Q2 = P1,

Q2 =
1

P2
, (4.8)

Q2Q3 = P3,

from which it follows that Q1 = P1P2, Q3 = P2P3, Q1Q2Q3 = P1P2P3, Q1Q3 = P1P
2
2 P3.

Substituting these into (2.6) the only terms with negative powers we obtain are P−n
2 . Upon

analytic continuation these should turn into Pn
2 together with appropriate change in the

classical part of the free energy, as is the case for the conifold. Thus we expect the following

instanton contribution to the partition function of Cflop

ZCflop

= exp
∑

n>0

−Pn
1 Pn

2 − Pn
2 − Pn

2 Pn
3 + Pn

1 + Pn
1 P 2n

2 Pn
3 + Pn

3 − Pn
1 Pn

2 Pn
3

n[n]2
, (4.9)

We first show by explicit calculation this is the correct result, and afterwords analyze

classical contributions.

To prove that (4.9) is indeed correct we again use topological vertex rules. Similarly

as for the closed vertex, we consider the flopped geometry as a strip with an additional P
1

– 12 –



J
H
E
P
1
2
(
2
0
0
6
)
0
3
0

Figure 6: The flopped closed topological vertex Cflop as a strip with attached P
1 of the size

determined by P3.

attached

ZCflop

=
∑

α

sαt(qρ)(−P3)
|α|Zflop

α

[

(−1)|α|q−κα/2
]

,

the factors in square brackets originating from a nontrivial framing of the additional sphere.

This is presented in figure 6, with Zflop
α corresponding to the amplitude on the strip

corresponding to a string of spheres P2 − P1

Zflop
α = sα {α•}P2{α•}P1P2[••]P1 =

= e
P

n

−Pn
2 −Pn

1 Pn
2 +Pn

1
n[n]2 sα(qρ)

∏

k

(1 − P2q
k)Ck(α)(1 − P1P2q

k)Ck(α),

where we again used rules from the appendix B (now we read vertices from left to right,

and they are of the types Aα − B − B). Now we use (A.3) to write the full amplitude as

ZCflop

= e
P

n

−Pn
2 −Pn

1 Pn
2 +Pn

1
n[n]2

∑

α

(qP3)
|α|q2n(α)

∏

(i,j)∈α

1 − P2 qj−i

1 − qh(i,j)

1 − P1P2 qj−i

1 − qh(i,j)
.

Finally, after identification (4.7), using equality (A.2) and summing over α we get

ZCflop

= e
P

n

−Pn
2 −Pn

1 Pn
2 +Pn

1
n[n]2 e

P

n

Pn
3 −Pn

2 Pn
3 −Pn

1 Pn
2 Pn

3 +Pn
1 P2n

2 Pn
3

n[n]2 ,

which is indeed the same as the expected result (4.9) and consistent with [9].

Let us finally turn to the issue of polynomial contributions. As mentioned above, those

for Cflop and C are related to each other due to the invariance of the full partition function.

We will show this relation is consistent with the values of cubic intersection numbers. These

intersection numbers can be derived from the description of homology classes given in [22],

where both geometries are discussed as different resolutions of C
3/Z2 × Z2 orbifold: the
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Figure 7: Two geometries C and Cflop as a symmetric (left) and asymmetric (right) resolution of

C3/Z2 × Z2.

closed topological vertex is a symmetric resolution, and its flop an asymmetric resolution.

The homology structure is in fact encoded in the dual diagram, with vertices corresponding

to divisors and internal intervals to compact curves (each one arising as an intersection of

two divisors at the end of the interval), as shown in figure 7. There are three divisors Di,

i = 1, 2, 3, in the singular orbifold, and additional three: Eij in its symmetric resolution,

or Ef
ij in asymmetric resolution, for i 6= j. The compact curves are the familiar by now

three P
1’s: Ci with sizes given by ti for the closed vertex geometry and Cf

i with sizes si

for its flop. For completness, let us recall the intersection numbers derived in [22]. For the

closed topological vertex these are

D1 D2 D3 E23 E13 E12

C1 = E12 ∩ E13 1 0 0 1 −1 −1

C2 = E12 ∩ E23 0 1 0 −1 1 −1

C3 = E13 ∩ E23 0 0 1 −1 −1 1

whereas for its flop

D1 D2 D3 Ef
23 Ef

13 Ef
12

Cf
1 = Ef

12 ∩ Ef
13 1 1 0 0 0 −2

Cf
2 = Ef

12 ∩ Ef
23 0 −1 0 1 −1 1

Cf
3 = Ef

13 ∩ Ef
23 0 1 1 −2 0 0

From these intersection numbers we can deduce the form of genus zero prepotentials

F0 in terms of sizes of P
1’s. In general

F0 =
1

6
J3,

with J the Poincare dual to the Kähler form. For the closed vertex geometry C it can be

parametrized by ei as

JC = e1E12 + e2E13 + e3E23,
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so that the sizes of P
1’s are given by

t1 = JC ∩ C1 = −e1 − e2 + e3,

t2 = JC ∩ C2 = −e1 + e2 − e3,

t3 = JC ∩ C3 = e1 − e2 − e3.

Expressing ei in terms of ti and combining with genus one contributions (which depend on

a single parameter b due to symmetry in the geometry), the classical free energy (2.2) for

the closed topological vertex reads

F C
class =

(t31 + t32 + t33
6g2

s

+
t21t2 + t1t

2
2 + t21t3 + t3t

2
1 + t22t3 + t3t

2
2

4g2
s

+
t1t2t3
2g2

s

)

+
b

24
(t1 + t2 + t3).

(4.10)

Similarly, for the flopped geometry the Kähler form has the Poincare dual

JCflop

= ef
1Ef

12 + ef
2Ef

13 + ef
3Ef

23,

and the sizes of P
1’s are

s1 = JCflop

∩ Cf
1 = −2ef

1 ,

s2 = JCflop

∩ Cf
2 = ef

1 − ef
2 + ef

3 ,

s3 = JCflop

∩ Cf
3 = −2ef

3 .

Including genus one contributions (for symmetry reasons now depending on two parameters

c, d), we get classical free energy

F Cflop

class =
(s3

1 + 2s3
2 + s3

3

6g2
s

+
2s2

1s2 + 2s1s
2
2 + s2

1s3 + s3s
2
1 + 2s2

2s3 + 2s3s
2
2

4g2
s

+
s1s2s3

2g2
s

)

+

+
c(s1 + s3) + ds2

24
=

t31 + t33
6g2

s

+
t21t2 + t1t

2
2 + t21t3 + t3t

2
1 + t22t3 + t3t

2
2

4g2
s

+
t1t2t3
2g2

s

+

+
c(t1 + t3) + t2(2c − d)

24
, (4.11)

where we used the identification (4.8) which equivalently reads s1 = t1+t2, s2 = −t2, s3 =

t3 + t2. Finally these classical terms can be combined with quantum ones F C = log ZC

and F Cflop

= log ZCflop

given in (2.6) and (4.9). Indeed, the full partition function is now

explicitly seen to be invariant under the flop

F C
class(t1, t2, t3) + F C(t1, t2, t3) = F Cflop

class (s1, s2, s3) + F Cflop

(s1, s2, s3),

under the identification between ti and si (4.8), and providing c = d = b. There are

two important remarks to be made. Firstly, quantum genus zero contributions for Cflop,

given by trilogarithm (2.5), are continued to negative t2 using Li3e
t2 − Li3e

−t2 ∼ t32/6

(where we keep only a cubic term, the other being ambiguous for topological string). This

continuation is precisely the origin of the well known shift in classical intersection numbers

under the flop (in our case this is seen explicitly in expressions (4.10) and (4.11)). Secondly,

the condition c = d = b which must be enforced is just a statement that the genus one

classical part after the flop is entirely determined by the geometry before the flop.
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5. Discussion

In this paper a class of Calabi-Yau crystals has been widened to include a model which

corresponds to a geometry of the closed topological vertex C. The model is an extension

- or rather a truncation - of other known crystal models to a finite cube. The model has

been explicitly derived from topological string computations. In parallel the corresponding

geometry C and its flop transition have been discussed, and Gopakumar-Vafa invariants

and classical contributions to the free energy for Cflop determined.

These considerations suggest two obvious directions for further studies. Firstly, one

might generalize the crystal interpretation of topological strings finding configurations rele-

vant for arbitrary toric geometries. In particular there is a class of geometries considered in

[20], which are an extension of the closed topological vertex by strings of spheres attached

to any of its constituent P
1’s. It requires essentially a new idea possibly related to gluing of

finite crystals discussed here. One might also consider D-brane configurations, both within

the closed topological vertex and in general geometries. It would be interesting to find

their statistical and geometrical interpretation in the spirit of [13] and [14].

The other task would be to simplify topological vertex rules for a wide class of geome-

tries. These rules have already been simplified for geometries whose dual toric diagram is

a triangulation of a strip [8]. As we discussed our results can be understood as ’off-strip’

calculations, and they require using some special identities for Schur functions. It would be

desirable to generalize these methods in a coherent fashion, in a way which would allow to

turn arbitrary topological vertex expressions to a closed form with various sums automati-

cally performed. Similarly, it would be interesting to include D-branes into such a general

framework.

It is likely that these two lines of development might parallel each other. Apart from

calculational advantages, one particular goal of such a program would be to find a proper

formulation of the Gopakumar-Vafa invariants, at least in the context of toric manifolds.

The integral structure of topological string amplitudes is still a mystery. Nonetheless,

the structure of these amplitudes as obtained from crystal models is consistent with the

Gopakumar-Vafa expansion. On the other hand, crystal models are known to be related to

Donaldson-Thomas invariants which do have strong mathematical foundations. If a scope

of Calabi-Yau crystals were extended to arbitrary (toric) geometries as suggested above,

it would hopefully lead to a consistent formulation of the Gopakumar-Vafa invariants in

terms of Donaldson-Thomas invariants.
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A. Young diagrams and Schur functions

Probably the best known source on Schur functions is [24]. The issues relevant to topolog-

ical string calculations have been presented in [16]. In this appendix we briefly recall the

notation we use (which is the same as in [16]), and present the most important properties

we need, together with some new identities which are crucial for present calculations.

Young diagrams or partitions are denoted by letters P,R or Greek ones α etc., and t

means a transposition. For a partition R = (R1, R2, . . .) with lengths of rows given by Ri,

one defines

|R| =
∑

i

Ri,

n(R) =
∑

i

(i − 1)Ri,

κR = |R| +
∑

i

Ri(Ri − 2i) = 2
∑

(i,j)∈R

(j − i),

where (i, j) is a position of a certain box in the diagram. For such a single box, its hook

length is defined as

h(i, j) = Ri + Rt
j − i − j + 1. (A.1)

Schur function for a partition R is denoted as sR. By qR+ρ we understand a string

such that xi = qRi−i+1/2 for i = 1, 2, . . .. Thus

sR(qR+ρ) = sR(qR1−1/2, qR2−3/2, . . .).

In particular

sR(qρ) = sR(q−1/2, q−3/2, . . .).

The following identity holds for Schur function with finite number of arguments

sR(1, q, q2, . . . , qK−1) = qn(R)
∏

(i,j)∈R

1 − qK+j−i

1 − qh(i,j)
, (A.2)

and for K → ∞ this reduces to

sR(q−ρ) = q|R|/2+n(R)
∏

(i,j)∈R

1

1 − qh(i,j)
. (A.3)

A sum of Schur functions can be written as follows

∑

P

sP (x)sP t(y) =
∏

i,j

(1 + xiyj) = (A.4)

= exp
[

−
∑

n,i,j

(−1)n

n
xn

i yn
j

]

. (A.5)
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As noticed in [8], with x = qR+ρ and y = qR′+ρ this allows to write the sum as

∑

P

sP (qR+ρ)sP t(−QqR′+ρ) = exp
[

−
∑

n

Qn

n[n]2

]

∏

k

(1 − Qqk)Ck(R,R′), (A.6)

where coefficients Ck(R,R′) are given by
∑

i,j

qRi−i+1/2qR′

j−j+1/2 =
∑

k

Ck(R,R′)qk +
q

(1 − q)2
. (A.7)

From this statement the following properties are more or less easily deduced

Ck(R,R′) = Ck(R
′, R),

∑

k

Ck(R,R′)qk =
∑

k

Ck(R
t, R′t)q−k,

∑

Ck(R,R′) = |R| + |R′|,
∑

kCk(R,R′) =
κR + κR′

2
.

(A.8)

In particular, Ck(R) = Ck(R, •) counts the number of boxes (i, j) ∈ R with fixed k = j− i,

and so
∑

k Ck(R) = |R| and 2
∑

k kCk(R) = κR.

B. Topological vertex on a strip

There is a class of toric Calabi-Yau geometries whose dual diagrams are represented as

a triangulation of a rectangle (or a strip). Computation of their partition functions via

topological vertex methods has been vastly simplified in [8]. As this simplification is quite

convenient for a part of the calculations we perform, we briefly recall the rules on the strip.

We encourage a reader to consult [8] for more through presentation and proofs of these

rules.

A diagram which can be drawn on a strip is a string of P
1’s with parameters Qi, each

represented by an interval between vertices i and i+1. For every such interval we introduce

representations Ri which we sum over according to topological vertex rules. Additionally,

with every external leg of each vertex we can associate one fixed representation αi (for the

first vertex in a string there are two external legs, but one of them must be associated with

a trivial representation •; the same statement must hold for the last vertex).

The partition function for such a system can be expressed in terms of the quantities

{αiαj}Qij
= exp

[

−
∑

n

Qn
ij

n[n]2

]

∏

k

(1 − Qijq
k)Ck(αi,αj), (B.1)

[αiαj]Qij
= {αiαj}

−1
Qij

,

according to the following rules:

• determine the type of the first (i = 1) vertex to be A or B if respectively its topological

vertex factor is given by C•α1R1 or C•R1α1
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• determine recursively the type A or B of all other vertices: (j + 1)’th vertex is of the

same type as j’th if the local bundle of the sphere Qj is O(−2)⊕O, and of a different

type if this bundle is O(−1) ⊕O(−1)

• for each pair of vertices (i, j) in a diagram (with i < j) introduce a suitable factor

according to their types (A/B,A/B):

(A,B) → {αiαj}Qij
,

(B,A) → {αt
iα

t
j}Qij

,

(A,A) → [αiα
t
j ]Qij

,

(B,B) → [αt
iαj]Qij

,

where Qij = QiQi+1 · · ·Qj−1.

• the full amplitude, with external representations αi fixed, is given by a product of all

factors above together with Schur functions for all external representations

ZQ

αi
=

∏

i

sαi
(qρ)

∏

i<j

[{α†
iα

†
j}]Qij

,

with appropriate choice of the pairing [{ }], and with or without transposition † = t, ·.

For example, in figure 4 the strip-part consists of two intervals Q1 and Q2. We denote

the right-most vertex by i = 1, the middle one with external representation α by i = 2 and

the left-most by i = 3. There is no external representation on the first vertex, so we are free

to choose its type to be e.g. A; then we recursively determine types of all three vertices to

be A−Bα−A (for convenience we explicitly write external representations associated with

vertices, if they are nontrivial). Then according to the rules above the amplitude reads

Zα = sα {•α}Q1 [••]Q1Q2{α
t•}Q2 . (B.2)
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